

MFB Bedienungsanleitung MFB User manual

REV. A

Einleitende Information

Sehr geehrte Kunden, wir empfehlen die Produktdokumentation und vor allem auch die Warnhinweise vor der Inbetriebnahme gründlich zu lesen und diese zu Beachten. Das Produkt ist kein Spielzeug (15+).

HINWEIS: Vergewissern Sie sich, ob die Ausgangsspannungen zu ihrem Verbraucher passen, da dieser sonst zerstört werden kann! Für Nichtbeachtung übernehmen wir keine Haftung.

HINWEIS: Die Weichenadresse befindet sich ab CV120/121! Für Adressen < 256 reicht CV121 zu beschreiben usw.!

Beachten Sie die Hinweise bei Nutzung von DCCext!

Introduction

Dear customer, we strongly recommend that you read these manuals and the warning notes thouroughly before installing and operating your device. The device is not a toy (15+).

NOTE: Make sure that the outputs are set to appropriate value before hooking up any other device. We can't be responsible For any damage if this is disregarded.

NOTE: The switch address is from CV120/121! For addresses < 256 you need only write to CV121 etc.!

See informations carefully for DCCext!

Inhaltsverzeichnis

Table of Contents

Grundlegende Informationen	General information	4
Funktionsumfang	Summary of functions	5
Lieferumfang	Scope of supply	7
Inbetriebnahme	Hook-Up	8
Anschlussbuchsen	Connectors	9
Anschluss Brems-/Langsamfahrtabschnitt	Connectors break/slow driver	10
Anschluss Pendelsteuerung	Connectors pendula control	11
Produktbeschreibung	Product description	13
Bremsgeneratoranwendung	Braking module description	15
Beispiel Automaticbetrieb	Example automatic	18
Beispiel DCCext	Example DCCext	20
Beispiel Bahnhofshalt	Example station stop	21
Programmiersperre	Programming lock	22
Programmiermöglichkeiten	Programming options	22
Programmierung von binären Werten	Programming binary values	23
Programmierung Weichenadressen	Programming switch adress	23
Resetfunktionen	Reset functions	24
Software updates	Softwareupdate	24
Merkmale der Funktionsausgänge	Function output features	25
CV-Tabelle	CV-Table	27
Technische Daten	Technical data	39
Garantie, Reparatur	Warranty, Service, Support	40
EU-Konformitätserklärung	EC declaration of conformity	41
WEEE-Richtlinie	WEEE Directive	41
Hotline	Hotline	42

Grundlegende Informationen

Wir empfehlen die Anleitung gründlich zu lesen, bevor Sie Ihr neues Gerät in Betrieb nehmen.

Bauen Sie das Modul an einem geschützten Platz ein. Schützen Sie es vor andauernder Feuchtigkeit.

HINWEIS: Einige Funktionen sind nur mit der neusten Firmware nutzbar, führen Sie daher bei Bedarf ein Update durch.

General information

We recommend studying this manual thoroughly before installing and operating your new device.

Place the decoder in a protected location.

The unit must not be exposed to moisture.

NOTE: Some funktions are only available with the latest firmware. Please make sure that your device is programmed with the latest firmware.

Funktionsumfang

DC/AC/DCC Betrieb (digital & analog) DC/AC/DCC operation (digital & analog) Vollkompatibles NMRA-DCC Modul Compatible NMRA-DCC module DCCext fähig DCCext compatible 2 reinforced function outputs 2 verstärkte Funktionsausgänge 2 Weichenausgänge (2- und 3 Draht) 2 Switch outputs (2- and 3 wire) Intelligent switching for 3-Way switches Intelligentes Schalten für 3-Weg-Weichen Definierte Startposition einstellbar Defined start switching position Automatisierungsmodul ohne PC **Automatisition without PC** Vollwertiges, intelligentes Bremsmodul mit Full, intelligent braking module with integrierter Signalansteuerung, integrated signal controlling, overload free, kurzschlussfrei, keine Booster, Schalter o.ä. nötig! no booster, switches e.g. necessary! • Funktionen auch im Bremsabschnitt steuerbar Functions controllable but only if not "Brake-On-DC" (nur bei DCC-Bremsung) 1 Kontakteingang für entgegengesetzte 1 contact input for reverse train detection Zugdurchfahrtserkennung 2 Kontakteingänge für man. Bremsgensteuerung 2 contact inputs for manual control 2 Kontakteingänge für Pendelsteuerung 2 contact inputs for pendula control Konfigurierbare digitale/analoge Pendelautomatik Configurable digital/analog automatic pendel Überlastschutz Bremsmodul Overload protection fr braking module F-Tasten Auslösung mit Kontakten F-Key activation with keys Automatische Zurückschaltfunktionen Automatic switch back functions Funktionsausgänge dimmbar Function outputs dimmable Auslösung über Weichentasten Control via switch adresses **Automatische Bahnhofssteuerung** Automatic station control Resetfunktionen für alle CVs Reset function for all CV values Sehr einfaches Funktionsmapping Easy function mapping

Summary of Funktions

Multiple programming options

Needs no programming load

(Bitwise, CV, POM accessoire decoder, register)

5 MFB

Vielfältige Programmiermöglichkeiten

(Bitweise, CV, POM Schaltdecoder, Register)

Keine Last bei Programmierung erforderlich

Funktionen im schnellen Überblick

Im Analogbetrieb:

- Pendelzugsteuerung
- Kurzschlussfreier Betrieb ohne Sensoren,
 Booster oder teures/aufwendiges
 Equipment oder Magneten
- Plug&Play

Im Digitalbetrieb:

- Bremsgenerator mit Steuerung per Schaltbefehl oder Kontakteingang
- Automatisierungsabläufe ohne PC
- Bremsgenerator mit Steuerung
 Gegenfahrt per Kontakteingang
- Automatische Auslösung von F-Tasten
- Automatische Schaltungen ohne PC möglich
- Bremsgenerator mit Steuerung durch Signalkontakt
- Bremsgenerator mit Steuerung durch Signalkontakt Gegenfahrt
- Bremsgenerator per Break-On-DC oder echte DCC-Regelung (alle Funktionen und Zusatzartikel schaltbar im Abschnitt)
- digitales Abstellgleis
- Langsamfahrtstrecke
- Langsamfahrtstrecke in Kombination mit Bremsgenerator
- Kurzschlussfreier Betrieb ohne Sensoren,
 Booster oder teures/aufwendiges Equipment
- digitale Pendelzugsteuerung
- 2 Weichen/Schaltausgänge für Weichen oder direkt für die Signalsteuerung
- Bahnhofshaltsteuerung mit autom. Weiterfahrt
- Plug&Play

Functions in a fast overview

In analog mode:

- shuttle train
- short circuit free operation without sensors, booster or expensive equipment or magnets
- Plug&Play

In digital mode:

- brake generator with control by switch command or contact input
- automatic control systems without PC
- brake generator with control contact by inputs
- automatic f-key controlling
- automatic switching without PCs
- brake generator with control by signal contact
- brake generator with control through signal contact in opposite direction
- brake generator via break-on-dc or real DCC control (all functions and additional item switchable in section
- digital siding
- slowly route
- slow driving distance in combination with brake generator
- short circuit free operation without sensors, booster or expensive equipment
- digital shuttle control
- 2 points / switching outputs for points or directly for signal control
- Station control with aut. driving

- Plug&Play

Lieferumfang

Scope of supply

- Bedienungsanleitung
- mXion MFB

Manual m*X*ion MFB

Inbetriebnahme

Bauen bzw. platzieren Sie Ihr
Gerät sorgfältig nach den Plänen
dieser Bedienungsanleitung.
Die Elektronik ist generell gegen
Kurzschlüsse oder Überlastung
gesichert, werden jedoch Kabel
vertauscht oder kurzgeschlossen
kann keine Sicherung wirken und
das Gerät wird dadurch ggf. zerstört.
Achten Sie ebenfalls beim befestigen
darauf, dass kein Kurzschluss mit
Metallteilen entsteht.

HINWEIS: Bitte beachten Sie die CV-Grundeinstellungen im Auslieferungszustand.

HINWEIS: Bei analoger Pendelzugsteuerung NUR die Kontakteingänge zur Zeitanpassung nutzen, wenn **KEIN** Zug auf dem Pendelgleis ist!

Hook-Up

Install your device in compliance with the connecting diagrams in this manual. The device is protected against shorts and excessive loads. However, in case of a connection error e.g. a short this safety feature can't work and the device will be destroyed subsequently.

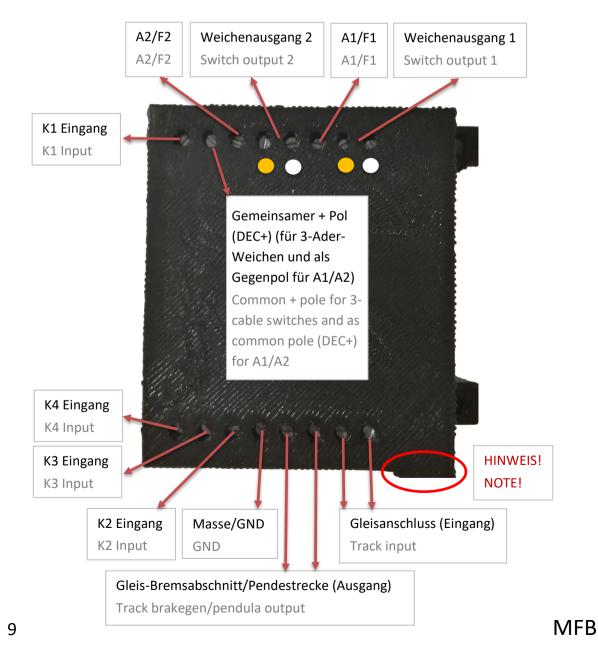
Make sure that there is no short circuit caused by the mounting screws or metal.

NOTE: Please note the CV basic settings in the delivery state.

NOTE: With analog shuttle control ONLY use the contacts for time adjustment, if **NO** train on the pendulum track!

Anschlussbuchsen

Schalten Sie Verbraucher zwischen A1/A2 und gemeinsamen + Pol. Bei 3-Ader-Weichen nutzen Sie den gemeinsamen + -Pol als Mittelleitung. Das Gleis des Bremsabschnitts muss vollständig isoliert vom Rest der Anlage sein!

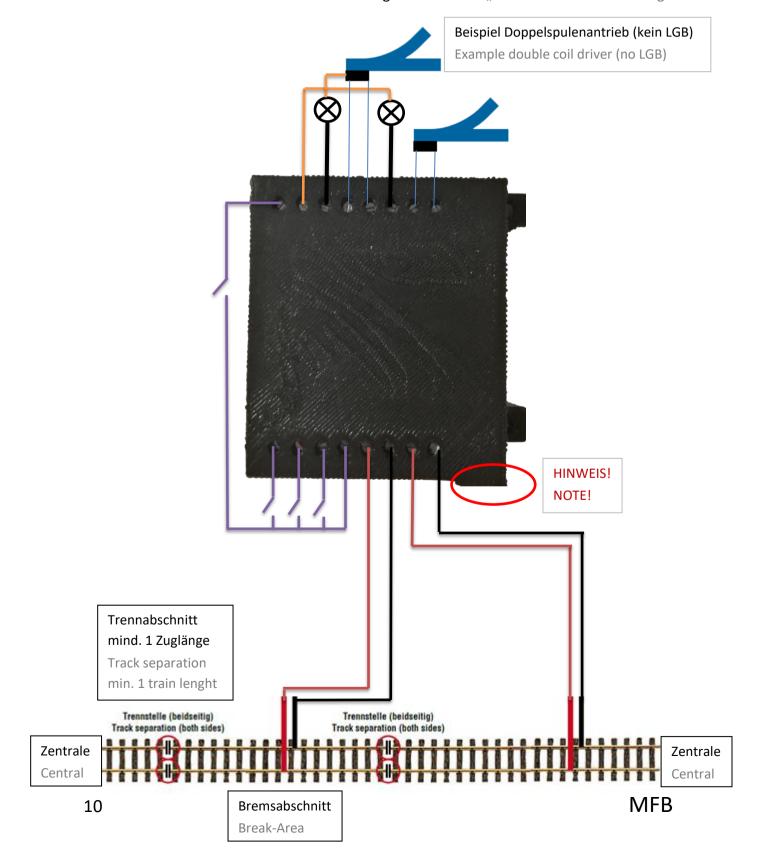

HINWEIS: Testen Sie nach Installation die Überfahrt vom Bremsgleis auf das Hauptgleis bei grünem Signal. Entsteht ein Kurzschluss, sind beide Gleise nicht in Phase Tauschen Sie dann bitte die beiden Eingangskabel des Bremsmoduls.

Connectors

Switch loads between A1/A2 and common + pole. Use with 3-wire switches the common + pole as the center line.

The track of the brake section must be complete isolated from the rest of the plant!

NOTE: After installation, test the crossing from the brake track to main track with green signal. If a short occurs, both tracks not in phase. Please change the input cables from the braking module.



Anschluss für Brems-/Langsamfahrtstrecke

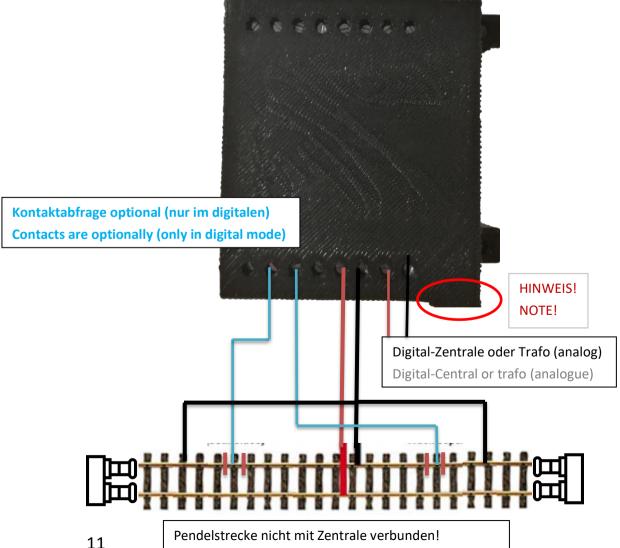
Die Umschaltung des Bremsabschnittes zwischen Fahrt, Langsamfahrt oder Stop kann per Weichenbefehl als auch Kontakteingang erfolgen. Für Fahrt sind die CVs mit "GO"-Adresse zuständig. Für Langsamfahrt "SLOW" und für Rückwärtsdurchfahrt die "REV" Adressen. Hierzu wird noch ein Zeitwert in CV113 benötigt.

Connectors for Break/Slow drive area

Switching the braking section between travel, slow travel or stop can be configured as a turnout command contact input also take place. The CVs are for driving with "GO" address responsible. For slow travel "SLOW" and the the "REV" addresses for driving backwards.

Anschluss für Pendelstrecke

Bei analogen Pendelstrecken reicht ein analoger Trafo als Versorgung. Die Zeiten der Pendelstrecke lässt sich durch die Kontakte einstellen.


Im digitalen werden alle Loks gependelt, welche sich im Pendelabschnitt befinden und in der Zentrale ausgewählt sind (aktiv). Weichenausgänge können weiterhin genutzt werden. Optional kann mit K2/3 die Pendelstrecke begrenzt werden oder reine Zeitsteuerung. Kontakte per Reed oder kleines Trennstück möglich was durch die Räder von Wagen/Lok gebrückt wird!

Connectors for pendula control

With analogue pendulum lines is sufficient analog transformer as supply. The times the commute can be through the set contacts

In the digital all locomotives are commuted, which are in the pendulum section and in the control panel are selected (active). Switch exits can still be used become.

Optionally with K2/3 the pendula drive can be stoped, or only time controlling. Contact with Reed or short piece that is shorted by train rails!

Pendula drive is not connected with command station

Um die Kontakteingänge schalten zu können, müssen diese entweder gegen DEC- (GND, Masse) geschlossen werden oder gegen das Gleis bspw.
Dabei ist es irrelevant an welche Gleisseite. Die Kontakteingänge sind geschützt, sodass positive Spannungen blockiert werden. Wichtig ist nur nach dem Kontakt wieder die Gleisspannung einzuspeisen.

To switch the contact inputs can, these must either closed against DEC- (GND) be or against the track voltage. It is irrelevant to which side of the track. The contact inputs are protected against positive voltage. It's important to set voltage after the contact input.

Die Kontakteingänge sind wie folgt belegt:

The contact inputs are as follows shows:

K1:

<u>Digitalbetrieb</u>: manueller Stop des Bremsabschnittes <u>Analogbetrieb</u>: Pendelzugsteuerung Reduktion von CV102

K1:

<u>Digital operation</u>: manual stop travel of br. <u>Analog operation</u>: shuttle train control reduction of CV102

K2:

<u>Digitalbetrieb</u>: manuelle Freifahrt des
Bremsabschnittes
Optionale Begrenzung der Pendelstrecke im
Pendelbetrieb (oder nur Zeitsteuerung).
<u>Analogbetrieb</u>: Pendelzugsteuerung
Erhöhung von CV101

K2:

<u>Digital operation</u>: manual free travel of the braking section

Optionally limited shuttle way in shuttle mode (or only time control possible).

<u>Analog operation</u>: shuttle train control increase of CV101

K3:

<u>Digitalbetrieb</u>: manuelle Langsamfahrt
Bremsabschnitt über CV117
Optionale Begrenzung der Pendelstrecke im
Pendelbetrieb (oder nur Zeitsteuerung).
<u>Analogbetrieb</u>: Pendelzugsteuerung
Reduktion von CV101

K3:

<u>Digital operation</u>: manual slow travel brake section via CV117

Optionally limited shuttle way in shuttle mode (or only time control possible).

<u>Analog operation</u>: shuttle train control reduction of CV101

K4:

<u>Digitalbetrieb</u>: Rückwährtsdurchfahrt bei rotem Signal Bremsabschnitt <u>Analogbetrieb</u>: Pendelzugsteuerung Erhöhung von CV102

K4:

<u>Digital operation</u>: backward passage at red signal braking section

<u>Analog operation</u>: shuttle train control increase of CV102

Produktbeschreibung

Das m**X**ion MFB ist ein 2-Kanal Weichendecoder mit 2 Funktionsausgängen für Weichenlaternen oder Signalbeleuchtung. Alle Weichenadressen sind komplett und ebenfalls unabhängig voneinander und frei adressierbar. Dazu können Dimm- und Zeiteinheiten eingestellt werden.

Hier bieten sich die Besonderheiten wie auch beim m**X**ion ZKW dass eine integrierte 3-Weg-Weichensteuerung implementiert ist. Diese steuert 3-Weg-Weichen so, dass immer eine definierte Richtung der Weiche stattfindet und Entgleisungen eliminiert werden. Stellen Sie die Zungen auf "gerade" wenn Sie den Modus nutzen, oder CV 49 Bit 3/4 = 1.

Das Highlight des m**X**ion MFB ist der vollintegrierte, 5A starke Bremsgenerator, welcher eine Signalsteuerung mit
Vor- und Hauptsignal integriert hat.
Es ist kurzschlussfrei, braucht keine
Sensorgleisstücke oder Zusatzschalter und erkennt durch den Hallsensor (Lokmagnet unter jeder Lok erforderlich!) eine inverse Zugdurchfahrt und lässt somit Züge in Gegenrichtung passieren.
Über CV-Werte kann die Erkennungsstromstärke eingestellt werden. Diese ist abhängig den betriebenen Züge und der Zentrale. Es kann ein Zug nur abgebremst werden, wenn der komplette Zug (beleuchtete Wagen, Loks) im Bremsabschnitt ist. Der Bremsabschnitt muss voll getrennt sein.

Product description

The m**X**ion MFB is a 2 channel switch decoder with 2 function outputs for switch laterns or signal lighting.

The two points are also independently of one another and freely adressable. For this purpose, dimming and time units.

Here are the special features as with the mXion ZKW that one integrated 3-way switch is implemented. This controls 3-way switches so that always has a defined direction of the soft takes place and derailments can be eliminated. Fit the switch to "straight" if using this mode or use CV 49 Bit 3/4 = 1.

The highlight of the mXion MFB is the fully integrated 5 Amps strong brake generator, which has a signal control with first and main signals. It is almost short-circuit-free, does not need any sensory elements or additional switches and detects by the hall sensor (locos magnets required!) an inverse train passage and thus allows trains to pass in the opposite direction. The detection current can be via CV values can be set. This is dependent on the operated trains and the headquarters. It can be a train (illuminated wagons, locos) in the braking section is. The braking section must be seperated on both sides!

Außerdem ist es möglich, den Bremsgenerator durch 2 Kontakteingänge manuell auf Stopp/Fahrt sowie Langsamfahrt zu schalten. Dies ist nützlich bei Verwendung von Lichtsignalen. Die Fahrstufe kann in CV 117 angegeben werden. Es gelten hier die gleichen Bedingungen wie bei CV 112. Diese Funktion ist nützlich für andere Signale oder Kontaktschalter.

Zudem ist es möglich, eine Pendelautomatik zu konfigurieren. Diese kann digital sowie analog arbeiten. Die Geschwindigkeit sowie Richtung lässt sich per CV einstellen und optimieren. Gleiches gilt für Fahrt- und Haltezeiten. Innerhalb des Pendelabschnitts lassen sich alle Funktion der Fahrzeuge als auch weitere Decoder (bspw. Weichen) schalten, lediglich die Geschwindigkeit wird über das Modul bestimmt. Innerhalb dieses Modus ist der Bremsgenerator nicht nutzbar.

Bei Analogbetrieb wird eine analoge Spannung an die "Gleis"-Anschlüsse angeschlossen. Im Digitalbetrieb wird die Digitalspannung der Zentrale benötigt.

Im Auslieferungszustand ist die Pendelzugsteuerung aktiv (bedingt durch Analogbetrieb).

Kontakteingänge müssen gegen GND (Masse) geschaltet werden sind aber gegen positive Spannungen geschützt, sodass auch bspw. für den Hall-Sensor die Gleisspannung dort angelegt werden kann.

Der MFB unterstützt passend zu unseren Signalen der RhB TYP L sowie unsere HV, HL und KS Signale auch DCCext mit einstellbaren Befehlen.

In addition, it is possible to use the brake generator by two contacts manually on stop/trip as well as slow driving. This is useful at use of light signals or extern signals. The driving stage can be in CV 117 ca be specified. The same applies here conditions as for CV 112.

It is also possible to use an automatic shuttle configure. This can be digital as well as analog work. The speed as well as direction leaves to adjust and optimize by CV same for driving and holding times. Within the shuttle drive section can be any function of the cars as well as further decoders (for example switches) switch, only the speed and direction is over the module. Within this mode is the brake generator can not be used. At the analog operation it must be a analog voltage at the "track" inputs. In digital mode the digital track voltage from the central is necessary.

In delivery state the shuttle train control is active (due to analogue operation)

Contacts must be grounded against GND but are switched to positive voltages are protected, so that for example, the hall sensor the track voltage there can be.

The MFB supports our RhB Type L signals as well as our HV, HL and KS signals, as well as DCCext with configurable commands.

Bremsgeneratoranwendung

Es ist wahlweise Brake-On-DC oder normale DCC-Bremsung möglich (globale Adresse). Züge bremsen mit der in CV 4 eingestellten Bremsverzögerung ab. Lesen Sie die Anleitung Ihrer Lokdecoder ob diese "Brake-On-DC".

Solange das Signal rot ist, werden alle Züge, welche in den Bremseinschnitt einfahren, langsam abgebremst (CV 4). Schaltet das Signal auf grün fahren diese mit der zuvor gefahrenen Geschwindigkeit wieder langsam an (CV 3) sofern CV 112 = 0.

Durch die Zurückschaltfunktion kann das Signal automatisch nach Zeitablauf wieder auf rot springen und weitere Züge anhalten. Damit ist ein halbautomatischer Ablauf möglich.

Durch die 2 Weichenausgänge kann das MFB direkt ein Hauptsignal und Vorsignal autark steuern. Mit den 2 Funktionsausgängen können dann Signallaternen geschaltet werden. Durch die Dimmfunktion lassen sich auch andere Leuchtmittel verwenden.

Die Erkennungsstromstärke (CV 114) muss anhand Ihrer Anlage und eingesetzten Züge angepasst werden. In CV 113 haben Sie die Möglichkeit, die Zeitdauer für Züge in Gegenrichtung (in Kombination mit Hall-Sensor) zu definieren. In der Zeit muss ein Zug passiert sein, bevor der Bremsgenerator aktiv wird.

Braking module description

It is optional Brake-On-DC or normal DCC braking via DCC breaking possible (global adress). Trains will break with CV 4 delay. Read the instruction your locomotive decoder whether this "Brake-On-DC".

As long as the signals is red, which enter into the brake cut slowly decelerated (CV 4). Switches the signal on green driving this with the previous speed again slowly at with CV 3 only if CV 112 = 0.

The signal can be switched off by the switch-back function automatically to red after timeout jump and stop further trains. In order to a semi-automatic is good.

The MFB can be operated by the two switch points directly control a main signal and a distant signal autonomously.

With the 2 function outputs, signaling devices. Through the dimming function can also be other use the lamp.

The detection current (CV 114) must be determined by your equipment and the trains used. In CV 113 you have the option of the duration for trains in opposite direction (in combination with hall sensor). In this time the train must cross the piece.

Innerhalb des Bremsabschnitts, welcher beidseitig voll getrennt vom Rest der Anlage sein muss, sind alle Decoder voll steuerbar wenn die DCC-Bremsung genutzt wird. Somit können Lokfunktionen weiterhin geschaltet werden. Alle Funktionen welche beim Befahren in den Abschnitt aktiviert wurden (bspw. Licht, Sound) bleiben im Bremsabschnitt erhalten. Die Lok arbeitet ganz normal weiter (bspw. Bremsquietschen ertönt, wenn der Zug abgebremst wird, sofern eingebaut und aktiviert).

Besonders angenehm ist, dass der Bremsgenerator keinen Booster oder extra Zubehör benötigt. Sie können eine Trennstelle herstellen und diesen einfach einsetzten.

Langsamfahrabschnitte sind ebenfalls möglich. Hierzu können Sie die gewünschte Fahrstufe in CV 112 angeben (1 – 14/28). Auch hier gilt, dass solange der Zug im Brems-/Langsamfahrabschnitt ist, dieser nicht steuerbar ist, seine Funktionen aber aktiv bleiben. Langsamfahrt nur wenn CV 49 Bit 1 = 1.

Wenn Sie in CV 112 eine Fahrstufe angeben (> 0) ist Langsamfahrt aktiv. Nun fährt die Lok mit der angegebenen Fahrstufe los sobald das Signal auf "grün" schaltet. Solange der Zug im Bremsabschnitt ist, fährt er mit der angegebenen Fahrstufe. Sobald er den Abschnitt verlässt, nimmt er wieder seine alte Geschwindigkeit an.

Bitte beachten Sie, dass beim Überfahren von kleinen Loks die Kontaktprobleme aufweisen, die Funktionen im Bremsabschnitt ausgehen. Hier empfiehlt sich ein Speicherpuffer innerhalb der Lok. Within the braking section, which fully separated on both sides from the rest of the system must be, the train is longer fully controllable with functions and sound. All other decoders can controlled too. All functions, which when traveling into the section (e.g. light, sound). In the braking section. The locomotive works normal (e.g. brake squeal sounds when the train is decelerated, provided that installed and activated).

Particularly pleasant is the brake generator no booster or extra accessoiries needed. You can create a separator and add it easy to use.

Slow cut sections are also possible. For this purpose, you can select the desired driving stage in specify CV 112 (1-14). Again, this is true as long as the train is in the deceleration section, this is not controllable, but is functions are active (only if CV 49 Bit 1 = 1).

If you specify a driving stage in CV 112 (> 0) slow speed is active. Now driving the loco with the indicated driving stage as soon as the signal on "green". As long as the train in the brake section, the driver is driving at the specified speed. As soon as he leaves the section, he takes again it's old speed.

Please note that when crossing small ones locos that have contact problems, the functions in the brake section. Here is a suggestion memory buffer good.

Der Bremsgenerator besitzt einige spezielle CV's, welche mit Vorsicht verändert werden sollten.

CV 112 ist die Langsamfahrstufe wenn der Bremsabschnitt nicht nur "Halt" sein soll. Die Fahrstufe (1-14) ist 1:1 für 14 stufige Loks und für 28 stufige Loks. Bei Loks mit 128 Fahrstufen, wird diese automatisch x6 genommen. Wenn Sie nur Fahrzeuge mit 128 Fahrstufen betreiben, können Sie auch Werte größer 14 eintragen. Achten Sie nur darauf, dass diese x6 gerechnet werden.

CV 113 bildet die "Durchlasszeit" bei Rückwärtsfahrt in Kombination mit dem Hall-Sensor und Lokmagneten. Innerhalb dieser Zeit ist der Abschnitt auf "Fahrgleis" geschaltet und nach Ablauf der Zeit wird der Bremsgen. wieder aktiv. Die Zeit ist retriggerbar!

CV 114 ist der Erkennungsstrom bei Lokeinfahrt in den Bremsabschnitt. Wenn Sie Loks mit hohem Stromverbrauch haben, müssen Sie diese CV anpassen, da sonst die fahrende Lok als Lokeinfahrt erkannt wird. Wenn bei Ihnen keine Lokkombination mehr als 3,5A braucht, müssen Sie diese CV nicht ändern.

CV 115 bildet die Erkennungsrate. Wenn Sie diese Zeit hochdrehen, gehen Sie immer mehr in den "kurzschlussbetrieb". Diese CV ist im direkten Zusammenhang mit CV 114! VORSICHT!

CV 116 ist die Zeit, nachdem der Bremsabschnitt aktiv wird, sobald eine Lokeinfahrt erkannt wurde. Die Zeit ist interessant für Loks, welche beim Überfahren der Trennstelle stocken. Das Fahrzeug wird erst NACH der abgelaufenen Zeit abgebremst!

CV117 ist die Langsamfahrstufe für ext. Kontakteingang als auch für manuelles "SLOW" schalten.

The brake generator has some special CV's which should be changed with caution.

CV 112 is the slow speed stage when the brake section should not only be "stop". The driving stage (1-14) is 1:1 for 14-steps locos and for 28-steps locos. For locos with 128 speed steps these are automatically taken x6. If you only drive vehicles with 128 speed steps can operate you can also enter values greater than 14. Note that x6!

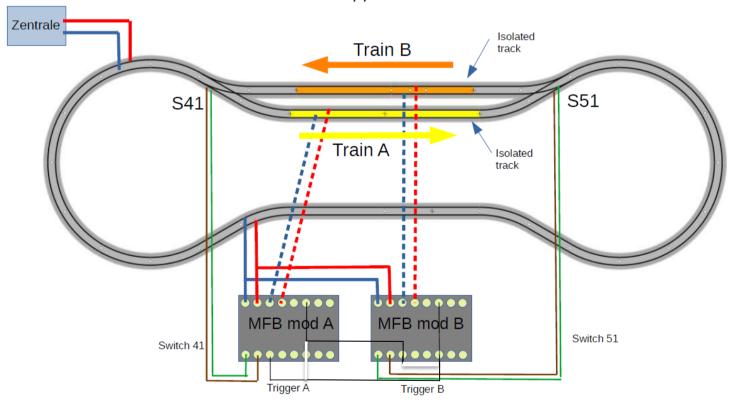
CV 113 forms the "passage time" when reversing in combination with Hall sensor and loco magnets. Within this time, the section is set to "skid" and after the lapse of time the brake gen. active again.

CV 114 is the detection current at the entrance to the loco brake section. If you have locos with high power you need to adjust this CV. Otherwise the loco will be recognized as driving in loco. If you do not have this (e.g. more than 3,5A) don't change.

CV 115 is the detection rate. If you turn this up, you are going more and more into the short circuit detection. This CV is direct rated to CV 114! CAUTION!

CV 116 is the time after the brake section active as soon as the loco has been detected. The time is interesting for locos exceed the separation point. The vehicle is braked only after the expired time!

CV117 is slow stage drive for ext. contact input and for manuel slow drive switching


Beispiel Automatikbetrieb

Ein klassisches Beispiel ist der automatische Ablauf 2 fahrender Züge in einen Bahnhof. Zug 1 fährt in den Bahnhof und hält automatisch an. Zug 2 fährt automatisch los, die Weichen schalten automatisch. Zug 2 kommt wieder im Bahnhof an, stoppt, triggert Zug 1 und dieser fährt los, Weichen schalten um. Dieser automatische Ablauf ist problemlos mit dem MFB realisierbar.

Example Automatic

A classic example is the automatic one expiration of 2 trains in a train station. Train 1 goes to the station and stops automatically. Train 2 automatically starts, the switches switch automatically. Train 2 is coming back at the station stops, train 1 and triggers this starts, switches turn around. This automatic process is easy feasible with the MFB.

MFB Bremsmodule Application: station switcher

Operation (loop mode):

- 1. Train A starts its run, sets S41 to R, drives clockwise, gets back to station A, sends trigger to train B
- 2. Train B starts its run, sets S51 to R, drives counter clockwise, gets back to station B, sends trigger to train A
- 3. Back to step 1

Betriebsablauf:

- 1. Zug A startet, setzt S41 zu R, fährt im Uhrzeigersinn, kommt zurück zu A und triggert Zug B
- 2. Zug B startet, setzt S51 zu R, fährt gegen den Uhrzeigersinn, kommt zurück zu B, setzt Zug A
- 3. Ablauf startet wieder von vorne bei 1.

Dieser Betriebsablauf kann über eine CV aktiviert werden, indem CV61 = 1 gesetzt wird. Es werden dann alle nötigen CVs gesetzt. Ggf. muss eine Anpassung falls nötig vorgenommen werden. CV61 wird danach wieder auf 0 gesetzt vom Modul. Anstelle des Triggersignals A oder B von A1 kann auch ein Reed genutzt werden. Die Adressen können/müssen frei vergeben werden.

activated by setting CV61 = 1. All necessary CVs will be set. Possibly, needs an adjustment if necessary be made. CV61 will be after set to 0 again by the module. Instead of trigger signal A or B from A1 can also be a reed can be used. The addresses can/must be awarded freely.

This operation can be done via a CV be

Folgende CVs werden eingestellt:

CV49 = 3

CV96 = 5

CV97 = 100

CV98 = 100

CV100 = 0

CV112 = 4

CV117 = 3

CV145 = 120

CV148 = 0

CV50 = 2

CV61 = 0

The following CVs are set:

Beispiel DCCext

Ab Version 2.0 unterstützt der MFB DCCext und passt damit nicht nur perfekt zu unseren DCCext fähigen Zentralen sondern auch zu unseren wetterfesten Signale (RhB Typ L, HL, HV und KS Typen). Bei Nutzung von DCCext sind einige Dinge zu beachten:

Alle Weichenadressen des Bremsgenerator sowie die manuellen "GO" und "SLOW" Adressen. Die Adressen für Rückwärtsdurchfahrt funktionieren jedoch weiterhin nur mit regulären Adressen oder per Schalteingang (empfohlen).

Bei Bedarf können die Weichenadressen der Weichenausgänge weiterhin mit regulären Schaltadressen betrieben – oder auch über DCCext Befehle laufen. Wenn über DCCext Befehle ist es ratsam diese auch auf 0 zu setzen.

Über CV64 (SW1) und CV65 (SW2) werden auch bei DCCext Weichenausgänge mit den "GO" oder "SLOW" Befehl verbunden sodass diese mitschalten in der gewünschten Richtung.

Die DCCext Befehlswerte teilen sich in je 10 CVs je Befehlswert auf. Hierfür gibt es wie bei den regulären Schaltadressen "GO", "SLOW" und "STOP". Dies ist passend zu unseren Lichtsignalen. Nicht benötigte Befehlswerte werden auf 255 gesetzt (deaktiviert). Per Auslieferung sind Grundwerte unserer Signale HV, KS und des RhB TYP L hinterlegt sowie auch eine Grundeinstellung der HL Typen. Da hier jedoch sehr viele Bilder vorhanden sind, ist es ratsam bei Bedarf hierzu die Befehlswerte anzupassen und zu erweitern. Die Befehle sind in der Anleitung des Signals sowie der Signalbilder als DCCext Wert angelegt. Dieser entspricht dem Befehlswert.

Example DCCext

Starting with version 2.0 the MFB supports
DCCext and is therefore perfectly compatible
not only with our DCCext capable central units
but also with our weatherproof signals (RhB
type L, HL, HV and KS Types). When using
DCCext a few things must be taken into account:
All turnout addresses of the brake generator as
well as the manual "GO" and "SLOW" addresses
However, the addresses for reverse passage
continue to work only with regular addresses
or via a switching input (recommended).

If necessary, the turnout addresses of the turnout outputs can continue to be operated with regular switching addresses — or via DCCext commands. If using DCCext commands it is advisable to set these to 0 as well.

CV64 (SW1) and CV65 (SW2) are also used to connect the DCCext turnout outputs to the "GO" or "SLOW" command so that they switch in the desired direction.

The DCCext command values are divided into 10 CVs per command value. As with the regular switching addresses, there are "GO", "SLOW" and "STOP". This is appropriate for our light signals.

Unneeded command values are set to 255 (deactivated). The factory default values for our HV, KS and RhB Type L signals are stored as well as a default setting for the HL types. However, since there are many images available here, it is advisable to adjust and expand the command values as needed. These are stored in the manual of the signals as a DCCext value. This ist he command value.

Beispiel Bahnhofshalt

Eine weitere intelligente Steuerungsmöglichkeit mit dem MFB ist eine erweiterte Möglichkeit des normalen Bremsgenerators. Im Gegensatz zum normalen Ablauf (Zug fährt ein, bremst und wartet auf manuelle Freigabe oder Kontaktfreigabe) ermöglicht in diesem Modus eine erweiterte Funktion die über CV163/164 manuell de- und aktivierbar ist. Über CV165 kann eine Wartezeit in Sekunden für den Aufenthalt im Bahnhof eingestellt werden. CV166 gibt an, wie lange nach der Zeit in CV165 der Abschnitt auf Freifahrt geschaltet wird. Danach schaltet er wieder auf STOP zurück.

Der Ablauf ist nun wie folgt: Ein Zug fährt in den Bremsabschnitt ein, hält an. Nach der Zeit in CV165 fährt dieser wieder automatisch aus dem Bahnhof und danach schaltet der MFB wieder auf "HALT" für weitere einfahrende Züge.

Example Station stop

Another intelligent control option with the MFB is an extended possibility of normal brake generator. In contrast to normal process (train pulls in, brakes and waiting for manual for manual release or contact release) enables an advanced in this mode function which can be manually de- and activated. Via CV165 there can be a wait in seconds to stay at the station can be set. CV166 indicates how long after the time in CV165 the section on free travel is switched. Then he switches back to STOP.

The process is now as follows: A train goes in the braking section stops. After time in CV165 this runs automatically again out of the station and then the MFB switches back to "STOP" for further incoming trains.

Programmiersperre

Um versehentliches Programmieren zu verhindern bieten CV 15/16 eine Programmiersperre. Nur wenn CV 15 = CV 16 ist eine Programmierung möglich. Beim Ändern von CV 16 ändert sich automatisch auch CV 15. Mit CV 7 = 16 kann die Programmiersperre zurückgesetzt werden.

STANDARTWERT CV 15/16 = 255

Programmiermöglichkeiten

Dieser Decoder unterstützt die folgenden Porgrammierarten: Bitweise, POM, Register CV lesen & schreiben.

Es wird keine zusätzliche Last zur Programmierung benötigt.

Im POM (Programmierung auf dem Hauptgleis) wird ebenfalls die Programmiersperre unterstützt. Der Decoder kann zudem auf dem Hauptgleis programmiert werden, ohne das andere Decoder beeinflusst werden. Somit muss bei Programmierung kein Ausbau des Decoders erfolgen.

HINWEIS: Um POM zu nutzen ohne andere Decoder zu beeinflussen muss Ihre Digitalzentrale POM an spezifische Decoderadresse unterstützten

Programming lock

To prevent accidental programming to prevent CV 15/16 one programming lock. Only if CV 15 = CV 16 is a programming possible. Changing CV 16 changes automatically also CV 15.

With CV 7 = 16 can the programming lock reset.

STANDARD VALUE CV 15/16 = 255

Programming options

This decoder supports the following programming types: bitwise, POM and CV read & write and register-mode.

There will be no extra load for programming.

In POM (programming on maintrack) the programming lock is also supported. The decoder can also be on the main track programmed without the other decoder to be influenced. Thus, when programming the decoder can not be removed.

NOTE: To use POM without others decoder must affect your digital center POM to specific decoder adresses.

Programmierung von binären Werten

Einige CV's (bspw. 29) bestehen aus sogenannten binären Werten. Das bedeutet, dass mehrere Einstellungen in einem Wert zusammengefasst werden. Jede Funktion hat eine Bitstelle und eine Wertigkeit. Zur Programmierung einer solchen CV müssen alle Wertigkeiten addiert werden. Eine deaktivierte Funktion hat immer die Wertigkeit 0.

BEISPIEL: Sie wollen 28 Fahrstufen, lange Lokadresse programmieren. Dazu müssen Sie in CV 29 den Wert 2 + 32 = 34 programmieren.

Programmierung Weichenadressen

Weichenadressen bestehen aus 2 Werten. Für Adressen < 256 kann der Wert direkt in Adresse tief programmiert werden. Adresse hoch ist dabei immer 0. Wenn die Adresse > 255 ist, wird diese wie folgt berechnet (bspw. Adresse 2000):

2000 / 256 = 7,81, Adresse hoch ist also 7 $2000 - (7 \times 256) = 208$, Adresse tief ist somit 208.

Tragen Sie diese Werte in die entsprechenden CVs für A1, A2, SW1, SW2, Man. GO, SLOW, Break ein.

Programming binary values

Some CV's (e.g. 29) consist of so-called binary values. The means that several settings in a value. Each function has a bit position and a value. For programming such a CV must have all the significances can be added. A disabled function has always the value 0.

EXAMPLE: You want 28 drive steps and long loco address. To do this, you must set the value in CV 29 2 + 32 = 34 programmed.

Programming switch adress

Switch addresses consist of 2 values.

For addresses < 256 the value can be directly in address low. The high address is 0. If the address is > 255 this is as follows (for example address 2000):

2000 / 256 = 7,81, address high is 7 $2000 - (7 \times 256) = 208$, address low is then 208.

Programm these values into the CVs of SW1, SW2, A1, A2, Man. GO, SLOW, BREAK.

Resetfunktionen

Über CV 7 kann der Decoder zurückgesetzt werden. Dazu sind div. Bereiche nutzbar. Schreiben mit folgenden Werten:

- 11 (Grundfunktionen)
- 16 (Programmiersperre CV 15/16)
- 33 (Funktions- und Weichenausgänge)

Reset functions

The decoder can be reset via CV 7. Various areas can be used for this purpose.
Write with the following values:

- 11 (basic functions)
- 16 (programming lock CV 15/16)
- 33 (function and switch outputs)

Funktion	A1	A2	SW1	SW2	Zeitwert
An/Aus	Х	Х	Х	Х	
Deaktiviert	Х	Х			
Dauer-An	Х	Х			
Nur vorwärts					
Nur Rückwärts					
Nur Stand					
Nur Fahrt					
Zeitfunktion sym.					Х
Zeitfunktion asym. kurz					Х
Zeitfunktion asym. lang					Х
Monoflop					Х
Einschaltverzögerung					Х
Kesselfeuer					
TV flackern					
Fotograf/Blitzlicht					Х
Petroleum flackern					
Leuchtstoffröhrenstart					
Paarw. Wechselblinker					Х
Autom. Zurückschaltung			Х	Х	Х
Dimmbar	Х	Х	х	Х	

Funktion	A1	A2	SW1	SW2	Timevalue
On/Off	X	Х	Х	Х	
Deactivated	X	Х			
Permanent-On	X	Х			
Forwards only					
Backwards only					
Standing only					
Driving only					
Timer sym. flash					Х
Timer asym. short					Х
Timer asym. long					Χ
Monoflop					Χ
Switch on delay					Χ
Firebox					
TV flickering					
Photographer flash					Х
Petroleum flickering					
Flourescent tube					
Pairwise alternating					Х
Autom. switch back			Х	Х	Х
Dimmable	Х	Х	X	Х	

CV-Tabelle

S = Standard, L = Lokadresse, W = Weichenadresse, LW = Lok- und Weichenadresse nutzbar

CV	Besch	reibung	S	L/W	Bereich		Bemerkung	
7	Softwa	reversion	-		-	ı	nur lesbar (10 = 1.0)	
7			l	Decode	r-Resetfun	ktionen		
					11	Grundfunktid	onen (CV 1,11-13,17-19,29-119)	
	3 Resetber	eiche wählbar			16	Programmie	rsperre (CV 15/16)	
					33	Funktions- &	Weichenausgänge (CV 120-148)	
8	Herstell	erkennung	160		-		nur lesbar	
7+8			ı	Registe	programie	rmodus		
						CV 7/8	behalten dabei ihren Wert	
	Reg8 = 0	CV-Adresse					t Zieladresse beschreiben, dann	
	Reg7 =	CV-Wert					ert beschreiben oder auslesen	
							ow: CV 49 soll 3 haben)	
							V 8 = 49, CV 7 = 3 senden	
15	J	perre (Schlüssel)	255	LW	0 – 255	Zum Sperren nur diesen ändern 		
16	J	sperre (Schloss)	255	LW	0 – 255	Änderung hier ändert CV 15		
48	Weichenadr	essberechnung	0	W	0/1	0 = Weichenadresse nach Norm		
		_					adresse wie Roco, Fleischmann	
49		nfiguration	0	LW			eise Programmierung	
	Bit	Wert			AUS (We	•	AN	
	0	1			generator o	deaktiv	Bremsgenerator aktiv	
	1	2			On-DC		DCC-Regelung	
	2	4		3-Weg	-Weiche de	eaktiv	3-Weg-Weiche aktiv	
	3	8		SW1 k	eine definie	erte Position	SW1 definierte Position	
	4	16		SW2 k	eine definie	erte Position	SW2 definierte Position	
	5	32		A1 nor	maler Ausg	gang	A1 dauerhaft eingeschaltet	
	6	64		A2 nor	maler Ausg	gang	A2 dauerhaft eingeschaltet	
	7	128		SW1/S	W2 einzeln	steuerbar	SW1/2 gepaart	

S = Standard, L = Lokadresse, W = Weichenadresse, LW = Lok- und Weichenadresse nutzbar

CV	Beschreibung	S	L/W	Bereich	Bemerkung
50	A1 als Trigger bei Zugeinfahrt	0	LW	0-3	0 = normale Funktion von A1, 1 = Trigger (für STOP und SLOW Modus), 2 = Trigger (nur bei STOP Modus), 3 = trigger (nur bei SLOW Modus)
51	Zeitverzögerung für Triggersignal an A1	5	LW	0 – 65	Monoflop-Zeitverzögerung für CV50 Zeitbasis 1 sek/Wert
52	Triggerzeit	5	LW	0 – 65	Zeitbasis 1 sek/Wert
53	F-Tastenauslösung für K1	0	LW	0 – 28	0 = deaktiv 1 – 28 = F-Taste
54	Zeitsteuerung für K1	5	LW	0 – 65	Zeitbasis 1 sek/Wert, Zeitspanne für F-Tastenauslösung
55	F-Tastenauslösung für K2	0	LW	0 – 28	0 = deaktiv 1 – 28 = F-Taste
56	Zeitsteuerung für K2	5	LW	0 – 65	Zeitbasis 1 sek/Wert, Zeitspanne für F-Tastenauslösung
57	F-Tastenauslösung für K3	0	LW	0 – 28	0 = deaktiv 1 – 28 = F-Taste
58	Zeitsteuerung für K3	5	LW	0 – 65	Zeitbasis 1 sek/Wert, Zeitspanne für F-Tastenauslösung
59	F-Tastenauslösung für K4	0	LW	0 – 28	0 = deaktiv 1 – 28 = F-Taste
60	Zeitsteuerung für K4	5	LW	0 – 65	Zeitbasis 1 sek/Wert, Zeitspanne für F-Tastenauslösung
61	Moduseinstellung Automatik	0	LW	0-1	0 = Modus gesetzt/Normal 1 = Automatikbetrieb Bahnhofswechsler
62	A2 als Belegtmelder	0	LW	0 – 255	0 = A2 normale Funktion 1 – 255 = Belegtmeldung, Wert = Erkennungsstrom (bspw. 10 = 1A Grenze)
63	Break-On-DC Modus	0	LW	0/1	0 = normal, 1 = invers
64	Positionsreset SW1	0	LW	0 – 136	Werte der gewünschten Funktion addieren! 0 = keine, +1 = bei GO-Befehl, +2 bei SLOW- Befehl, +4 bei STOP-Befehl, +8 bei Stationshalt "GO", +16 bei Stationshalt "SLOW", +128 = invers
65	Positionsreset SW2	0	LW	0 – 136	Werte der gewünschten Funktion addieren! 0 = keine, +1 = bei GO-Befehl, +2 bei SLOW- Befehl, +4 bei STOP-Befehl, +8 bei Stationshalt "GO", +16 bei Stationshalt "SLOW", +128 = invers

96	Kontaktko	onfiguration	0	LW		bi	tweise Programmierung
(ab	Bit	Wert		A	AUS (Wert 0	0)	AN
٧.	0	1	K2 tastend				K2 schaltend
1.1)	1	2			K3 tastend		K3 schaltend
	2	4			K2 normal		K2 schaltet SW1
	3	8			K2 normal		K2 schaltet SW2
	4	16			K3 normal		K3 schaltet SW1
	5	32			K3 normal		K3 schaltet SW2
	6	64		K3 sch	naltet SW1 i	normal	K3 schaltet SW1 invers
	7	128		K3 sch	ıaltet SW2 ı	normal	K3 schaltet SW2 invers
97	K2 Abschaltz	eit (ab. V. 1.1)	0	L/W	0 – 255	Zeitbasis 25	60 ms / Wert (wenn CV96 Bit2 = 1)
98	K3 Abschaltz	eit (ab. V. 1.1)	0	L/W	0 – 255	Zeitbasis 25	60 ms / Wert (wenn CV96 Bit3 = 1)
99	Global-Ca	ll Regelung	0	L/W	0/1	0 = normale	e Regelung, 1 = gleiche Adr. für all
100		utomatik	1		0/1		0 = deaktiv
	de	/aktivieren			(+128)		v (→ Bremsgenerator deaktiv)
							deaktiviere Ein/Aussfädelung
101		natik Fahrzeit	5		0 – 255		eitbasis 1 sek. pro Wert
102		natik Haltezeit	10		0 – 255		eitbasis 1 sek. pro Wert
103		utomatik	10		0 – 128	_ ,	g von verwendeten Fahrzeugen
	Geschwindig	keit nur digital					0 – 14 @ 14 Fahrstufen 0 – 28 @ 28 Fahrstufen
							ahrstufen Wert wird intern mit 6
							utomatisch Multipliziert
104	Pendela	utomatik	0		0/1	Fa	ahrtrichtung invertieren
	Fa	hrtrichtung			+128	+128 = Pend	delmodus beim Start abgeschaltet
107	Kontakteingä	inge invertiert			div.		0 = normale Richtung
							1 = K1 invers
							2 = K2 invers
							4 = K3 invers
112	Bremsgen. Lan	•	0		0 –		ingsamfahrabschnitt (stop/fahrt)
	Stufe (f	ür CV140/141)			14/28	1 – 14/2	8 = Fahrstufe der Lok bei Signal
						\A/~~~ 12	"grün"
							28 Fahrstufen, intern CV112 * 6 tiv beim Anschalten des Moduls
112	Promeson Püe	davährtefahrzoit	0		0 – 65		n. Durchlassfahrzeit in Sekunden
113 114		ckwährtsfahrzeit	30		1-50	nali-ci ken	
114	_	kennungsstrom rkennungszeit	0		0-10	0 - 200	Wert / 10 (30 = 3,0A) manent, sonst 1 ms pro Wert
116	_	Einfahrtszeit	10		0 – 10		eitbasis 0,1 sek. pro Wert
117		fahrt-Stufe	7		0 - 255		amfahrt-Stufe der externen
11/	_	gänge extern	,		14/28	_	gänge (bspw. Lichtsignale) und für
	Kontaktem	Builge CALETTI			1,,20		nuell "SLOW" (CV146/147)
							ehe CV 112 Beschreibung

118	Weichenausgang invers	0	LW	0 – 255	Werte der gewünschten Funktion addieren!
					SW1 = 1, $SW2 = 2$, $A1 = 4$, $A2 = 8$,
					Bremsgen. = 16, "GO" = 32, "SLOW" = 64,
					Bahnhofshalt-Steuerung = 128
120	Weichenadresse 1 (SW1) hoch	0	W	1 – 2048	
121	Weichenadresse 1 (SW1) tief	1	W		
122	Weichenadresse 1 Dimmwert	100	W	1 – 100	Dimmwert in % (1 % ca. 0,2 V)
123	Weichenadresse 1 Schaltzeit	0	W	0 – 255	0 = aus
	für autom. Rückschalten				1 - 255 = Zeitbasis 0,25 sek. pro Wert
124	Weichenadresse 1 Abschaltzeit	3	W	0 – 255	0 = dauerhaft angeschaltet
					1 – 255 = Zeitbasis 0,25 sek. pro Wert
125	Weichenadresse 2 (SW2) hoch	0	W	1 – 2048	
126	Weichenadresse 2 (SW2) tief	2	W		
127	Weichenadresse 2 Dimmwert	100	W	1 – 100	Dimmwert in % (1 % ca. 0,2 V)
128	Weichenadresse 2 Schaltzeit	0	W	0 – 255	0 = aus
	für autom. Rückschalten				1 – 255 = Zeitbasis 0,25 sek. pro Wert
129	Weichenadresse 2 Abschaltzeit	3	W	0 – 255	0 = dauerhaft angeschaltet
					1 – 255 = Zeitbasis 0,25 sek. pro Wert
131	A1 Dimmwert	100	LW	1 – 100	Dimmwert in % (1 % ca. 0,2 V)
132	A1 Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 5 = 0
133	A1 Adresse tief	3	W		
134	A1 Zeitwert für Sonderfunktion	10	LW	1 – 255	Zeitbasis 0,1 sek. pro Wert
136	A2 Dimmwert	100	LW	1 – 100	Dimmwert in % (1 % ca. 0,2 V)
137	A2 Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 6 = 0
138	A2 Adresse tief	4	W		
139	A2 Zeitwert für Sonderfunktion	10	LW	1 – 255	Zeitbasis 0,1 sek. pro Wert
140	Brems. gen. Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 1 = 1
141	Brems. gen. Adresse tief	1	W		Normale Bremsgenerator Steuerung
142	Brems. gen. Schaltzeit für	0	W	0 – 255	0 = aus
	autom. Rückschalten				1 – 255 = Zeitbasis 0,25 sek. pro Wert
143	Manuell "GO" Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 1 = 1
144	Manuell "GO" Adresse tief	0	W		Schalte das Gleis auf Vollfahrt (vgl.
	"				Kontakteingang "GO")
145	Manuell "GO" Schaltzeit für	0	W	0 – 255	0 = aus
	autom. Rückschalten				1 – 255 = Zeitbasis 0,25 sek. pro Wert
146	Manuell "SLOW" Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 1 = 1, Bit 2 = 1
147	Manuell "SLOW" Adresse tief	0	W		Schalte das Gleis auf Langsamfahrt (CV117)
					(vgl. Kontakteingang "SLOW")
148	Manuell "SLOW" Schaltzeit für	0	W	0 – 255	0 = aus
	autom. Rückschalten				1 – 255 = Zeitbasis 0,25 sek. pro Wert

149	Manuell "REV" Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 1 = 1
150	Manuell "REV" Adresse tief	0	W		Schalte das Gleis auf "Rangierfahrt" (CV113)
					(vgl. Kontakteingang K4)
151	Manuell "GO" Adresse hoch	0	W	1 – 2048	Gleicher Effekt wie CV143/144 als zzgl.
152	Manuell "GO" Adresse tief	0	W		Adresse
153	Manuell "SLOW" Adresse hoch	0	W	1 – 2048	Gleicher Effekt wie CV146/147 als zzgl.
154	Manuell "SLOW" Adresse tief	0	W		Adresse
155	Manuell "REV" Adresse hoch	0	W	1 – 2048	Gleicher Effekt wie CV155/156 als zzgl.
156	Manuell "REV" Adresse tief	0	W		Adresse
157	Manuell "GO" Adresse hoch	0	W	1 – 2048	Gleicher Effekt wie CV143/144 als zzgl.
158	Manuell "GO" Adresse tief	0	W		Adresse
159	Manuell "SLOW" Adresse hoch	0	W	1 – 2048	Gleicher Effekt wie CV146/147 als zzgl.
160	Manuell "SLOW" Adresse tief	0	W		Adresse
161	Manuell "REV" Adresse hoch	0	W	1 – 2048	Gleicher Effekt wie CV155/156 als zzgl.
162	Manuell "REV" Adresse tief	0	W		Adresse
163	Bahnhofsfahrt Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 1 = 1, Bit 2 = 1
164	Bahnhofsfahrt Adresse tief	0	W		Manuelles (de)aktivieren der
					Stationsweiterfahrt nach Ablauf von
					CV165/166
165	Bahnhofsfahrt Wartezeit	0	W	1 – 127	Haltezeit im Bremsabschnitt in Sekunden
					+128 = Angeschaltet beim Start
166	Bahnhofsfahrt Ausfahrtzeit	8	W	1 – 127	Ausfahrtszeit in Sekunden
					(danach wieder Stop-Modus)
					+128 = Langsamfahrt statt Freifahrt
167	Pendel/Bremsgenerator	0	W	1 – 2048	Umschaltadresse zwischen
	Adresse hoch				Pendelmodus und Bremsgeneratormodus
168	Pendel/Bremsgenerator	0	W		Aktiv wenn CV 49 Bit 1 = 1, Bit 2 = 1
	Adresse tief				
171	DCCext Adresse hoch	0	W	1 – 2048	Aktiv wenn CV 49 Bit 1 = 1, Bit 2 = 1
172	DCCext Adresse tief	0	W		

173	DCCext Befehl "GO1"	16	W	0 – 255	DCCext Wert für Freifahrt (GO)
174	DCCext Befehl "GO2"	41	W	0 – 255	DCCext Wert für Freifahrt (GO)
175	DCCext Befehl "GO3"	137	W	0 – 255	DCCext Wert für Freifahrt (GO)
176	DCCext Befehl "GO4"	65	W	0 – 255	DCCext Wert für Freifahrt (GO)
177	DCCext Befehl "GO5"	255	W	0 – 255	DCCext Wert für Freifahrt (GO)
178	DCCext Befehl "GO6"	255	W	0 – 255	DCCext Wert für Freifahrt (GO)
179	DCCext Befehl "GO7"	255	W	0 – 255	DCCext Wert für Freifahrt (GO)
180	DCCext Befehl "GO8"	255	W	0 – 255	DCCext Wert für Freifahrt (GO)
181	DCCext Befehl "GO9"	255	W	0 – 255	DCCext Wert für Freifahrt (GO)
182	DCCext Befehl "GO10"	255	W	0 – 255	DCCext Wert für Freifahrt (GO)
183	DCCext Befehl "SLOW1"	2	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
184	DCCext Befehl "SLOW2"	34	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
185	DCCext Befehl "SLOW3"	130	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
186	DCCext Befehl "SLOW4"	4	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
187	DCCext Befehl "SLOW5"	36	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
188	DCCext Befehl "SLOW6"	6	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
189	DCCext Befehl "SLOW7"	3	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
190	DCCext Befehl "SLOW8"	35	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
191	DCCext Befehl "SLOW9"	255	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
192	DCCext Befehl "SLOW10"	255	W	0 – 255	DCCext Wert für Langsamfahrt (SLOW)
193	DCCext Befehl "STOP1"	0	W	0 – 255	DCCext Wert für STOP/HALT
194	DCCext Befehl "STOP2"	69	W	0 – 255	DCCext Wert für STOP/HALT
195	DCCext Befehl "STOP3"	71	W	0 – 255	DCCext Wert für STOP/HALT
196	DCCext Befehl "STOP4"	70	W	0 – 255	DCCext Wert für STOP/HALT
197	DCCext Befehl "STOP5"	68	W	0 – 255	DCCext Wert für STOP/HALT
198	DCCext Befehl "STOP6"	255	W	0 – 255	DCCext Wert für STOP/HALT
199	DCCext Befehl "STOP7"	255	W	0 – 255	DCCext Wert für STOP/HALT
200	DCCext Befehl "STOP8"	255	W	0 – 255	DCCext Wert für STOP/HALT
201	DCCext Befehl "STOP9"	255	W	0 – 255	DCCext Wert für STOP/HALT
202	DCCext Befehl "STOP10"	255	W	0 – 255	DCCext Wert für STOP/HALT

CV-Table

S = Default, L = Loco address, S = Switch address, LS = Loco and switch address usable

CV	Descr	ription	S	L/S	Range		Note	
7	Softwar	e version	_		-	r	read only (10 = 1.0)	
7			[Decode	er reset fund	ctions		
					11	basic setting	s (CV 1,11-13,17-19,29-119)	
	3 ranges	available			16	programmin	g lock (CV 15/16)	
					33	function- & S	Switch outputs (CV 120-148)	
8	Manufa	cturer ID	160		-		read only	
7+8			Re	gister p	orogrammir	ng mode		
						CV 7/8 d	on't changes his real value	
	_	V-Address					rst with cv-number, then CV 7	
	Reg7 = 0	CV-Value					te with value or read	
						, -	: CV 49 should have 3)	
						→ CV 8 = 49, CV 7 = 3 writing		
15		ng lock (key)	255		0 – 255	to lock only change this value		
16		ng lock (lock)	255		0 – 255	changes in CV 16 will change CV 15		
48	Switch addre	ess calculation	0	S	0/1		witch adress like norm	
				<u> </u>			adress like Roco, Fleischmann	
49	mXion con	_	0	LS			wise programming	
	Bit	Value			OFF (Valu	•	ON	
	0	1			ig module o	ff	braking module on	
	1	2		Brake-	-On-DC		DCC-Controlling	
	2	4		3-Way	/-Switch ina	ctive	3-Way-Switch active	
	3	8		SW1 r	o defined p	osition	SW1 defined position	
	4	16		SW2 r	o defined p	osition	SW1 defined position	
	5	32		A1 no	rmal output		A1 permanent switched-on	
	6	64		A2 no	rmal output		A2 permanent switched-on	
	7	128		switch	outputs sir	ngle use	sw outp. paired	

S = Default, L = Loco address, S = Switch address, LS = Loco and switch address usable

CV	Description	S	L/S	Range	Note
50	A1 as trigger by train indrive	0	LW	0-3	0 = normal function, 1 = trigger (both, by STOP and SLOW mode), 2 = trigger (only in STOP mode), 3 = trigger (only in SLOW mode)
51	time delay for trigger signal on A1	5	LW	0 – 65	Monoflop time delay for CV50 time base 1sec/value
52	trigger signal length	5	LW	0 – 65	time base 1 sec/value
53	F-Key release for K1	0	LW	0 – 28	0 = deactive 1 – 28 = F-Key
54	time control for K1	5	LW	0 – 65	time base 1 sec / value, time base for F-Key
55	F-Key release for K2	0	LW	0 – 28	0 = deactive 1 – 28 = F-Key
56	time control for K2	5	LW	0 – 65	time base 1 sec / value, time base for F-Key
57	F-Key release for K3	0	LW	0 – 28	0 = deactive 1 – 28 = F-Key
58	time control for K3	5	LW	0 – 65	time base 1 sec / value, time base for F-Key
59	F-Key release for K4	0	LW	0 – 28	0 = deactive 1 – 28 = F-Key
60	time control for K4	5	LW	0 – 65	time base 1 sec / value, time base for F-Key
61	mode selection automatic use	0	LW	0-1	0 = mode is setted/normal operation 1 = automatic mode switcher
62	A2 as detector	0	LW	0 – 255	0 = A2 normal function 1 - 255 = detection, value = detection current (e.g. $10 = 1A$ current threshold)
63	Break-On-DC mode	0	LW	0/1	0 = normal, 1 = invers
64	position reset for SW1	0	LW	0 – 132	add the values to the desired function! 0 = none, +1 = at GO-Command, +2 at SLOW- Command, +4 at STOP- Command, +8 at StationStop "GO", +16 at StationStop "SLOW", +128 = invers
65	position reset for SW2	0	LW	0 – 132	add the values to the desired function! 0 = none, +1 = at GO-Command, +2 at SLOW- Command, +4 at STOP- Command, +8 at StationStop "GO", +16 at StationStop "SLOW", +128 = invers

S = Default, L = Loco address, S = Switch address, LS = Loco and switch address usable

CV	Descri	iption	S	L/S	Range		Note
96	Contact co	nfiguration	0	LW			bitwise programming
(from	Bit	Value	OFF (Value 0))	ON
V.	0	1		K2 punch			K2 switched
1.1)	1	2			K3 punch		K3 switched
	2	4			K2 normal		K2 control also SW1
	3	8			K2 normal		K2 control also SW2
	4	16			K3 normal		K3 control also SW1
	5	32			K3 normal		K3 control also SW2
	6	64	ı	K3 swit	ches SW1 r	normal	K3 switches SW1 invers
	7	128	ı	K3 swit	ches SW2 r	ormal	K3 switches SW2 invers
97	K2 switch off tir	ne (from V. 1.1)	0	L/W	0 – 255	time base	250 ms / value (if CV96 Bit2 = 1)
98	K3 switch off tir	ne (from V. 1.1)	0	L/W	0 – 255	time base	250 ms / value (if CV96 Bit3 = 1)
99	dcc glo	bal call	0	L/S	0/1	0 = dcc re	gulation, 1 = same address for all
100	Automatic shut	tle de/activate	1		0/1 (+128)	0 = deactive (min. version 1.2) 1 = active (→ braking module deavtive) +128 deactivate on/off fading	
101	Automatic shu	ttle drive time	5		0 – 255	time base 1 sec. each Value	
102	Automatic shu	ıttle hold time	10		0 – 255	time base 1 sec. each Value	
103	Automat speed (on		10		0 – 128	(depends from cars 0 – 14 @ 14 drive stages 0 – 28 @ 28 drive stages drive stages value will be the 6x internally calculated
104	Automat	ic shuttle	0		0/1		invert drive direction
	drive di	rection			+128	+128	= shuttle by start deactivated
107	Contact in	outs invers			div.	0 = normal direction 1 = K1 invers 2 = K2 invers 4 = K3 invers	
112	Braking module stage co CV140/1	ntrol (for	0		0 – 14/28	1 – 14/2 If 128	o slow driving stage (stop/go) 28 = driving stage if signal goes "green" 8 steps, internally CV112 * 6 28 = active if module starts
113	Braking modul	e reverse time	0		0 – 65	Hall dete	ction reverse on time in seconds
114	Braking module	e power detect.	30		1 – 50	V	alue / 10 (30 = 3,0 Amps)
115	Braking modu	le detect time	0		0 – 10	0 = pe	rmanent else 1 ms each value
116	Braking modul	e drive in time	10		0 – 255	tim	ne base 0,1 sec. each value

117	Slow driving stage	7		0 –	slow driving stage of external contact inputs
	extern contact inputs			14/28	(e.g. light signals) and for manuel "SLOW" look at CV 112 description
118	Switch output invers	0	LS	0 – 255	add the values to the desired function!
					SW1 = 1, SW2 = 2, A1 = 4, A2 = 8,
					Bremsgen. = 16, "GO" = 32, "SLOW" = 64
					Only with version 1.1 and higher
120	switch address 1 (SW1) high	0	S	1 – 2048	
121	switch address 1 (SW1) low	1	S		
122	switch 1 dimming value	100	S	1 – 100	dimming value in % (1 % approx. 0,2 V)
123	switch 1 time for automatic	0	S	0 – 255	0 = off
	switch back function				1 – 255 = time base 0,25 sec. each value
124	switch 1 switch off time	3	S	0 – 255	0 = permanent on
					1 – 255 = time base 0,25 sec. each value
125	switch address 2 (SW2) high	0	S	1 – 2048	
126	switch address 2 (SW2) low	1	S		
127	switch 2 dimming value	100	S	1 – 100	dimming value in % (1 % approx. 0,2 V)
128	switch 2 time for automatic	0	S	0 – 255	0 = off
	switch back function				1 - 255 = time base 0,25 sec. each value
129	switch 2 switch off time	3	S	0 – 255	0 = permanent on
					1 – 255 = time base 0,25 sec. each value
131	A1 dimming value	100	LS	1 – 100	dimming value in % (1 % ca. 0,2 V)
132	A1 address high	0	S	1 – 2048	active if CV 49 Bit 5 = 0
133	A1 address low	3	S		
134	A1 time for special function	10	LS	1 – 255	time base (0,1s / value)
136	A2 dimming value	100	LS	1 – 100	dimming value in % (1 % ca. 0,2 V)
137	A2 address high	0	S	1 – 2048	active if CV 49 Bit 6 = 0
138	A2 address low	3	S		
139	A2 time for special function	10	LS	1 – 255	time base (0,1s / value)
140	Break. gen. address high	0	S	1 – 2048	Active if CV 49 Bit 1 = 1
141	Break. gen. address low	1	S		normal break gen. controlling
142	Break. gen. time for automatic	0	S	0 – 255	0 = off
	switch back function				1 - 255 = time base 0,25 sec. each value
143	Manuel "GO" address high	0	S	1 – 2048	Active if CV 49 Bit 1 = 1
144	Manuel "GO" address low	0	S		switch track of complete on (see contact
					input "GO")
145	Manuel "GO" time for	0	S	0 – 255	0 = off
	automatic switch back function				1 - 255 = time base 0,25 sec. each value
146	Manuel "SLOW" address high	0	S	1 – 2048	Active if CV 49 Bit 1 = 1, Bit 2 = 1
147	Manuel "SLOW" address low	0	S		switch track to slow drive in CV117 (see
				0 0==	contact input "SLOW")
148	Manuel "SLOW" time for	0	S	0 – 255	0 = off
	automatic switch back function				1 - 255 = time base 0,25 sec. each value

149	Manuel "REV" address high	0	W	1 – 2048	Active if CV 49 Bit 1 = 1
150	Manuel "REV" address low	0	W		Switches to "Reverse drive" (CV113) (see.
					contact input K4)
151	Manuel "GO" address high	0	W	1 – 2048	Same effect as CV143/144 as additional
152	Manuel "GO" address low	0	W		switch address
153	Manuel "SLOW" address high	0	W	1 – 2048	Same effect as CV146/147 as additional
154	Manuel "SLOW" address low	0	W		switch address
155	Manuel "REV" address high	0	W	1 – 2048	Same effect as CV155/156 as additional
156	Manuel "REV" address low	0	W		switch address
157	Manuel "GO" address high	0	W	1 – 2048	Same effect as CV143/144 as additional
158	Manuel "GO" address low	0	W		switch address
159	Manuel "SLOW" address high	0	W	1 – 2048	Same effect as CV146/147 as additional
160	Manuel "SLOW" address low	0	W		switch address
161	Manuel "REV" address high	0	W	1 – 2048	Same effect as CV155/156 as additional
162	Manuel "REV" address low	0	W		switch address
163	Station stop address hoch	0	W	1 – 2048	Active if CV 49 Bit 1 = 1, Bit 2 = 1
164	Station stop address tief	0	W		Manual (de) activation of the station
					continuation after expiry of CV165/166
165	Station stop wait time	0	W	1 – 127	Holding time in the braking section in
					seconds
					+128 = Switched on at start
166	Station stop drive out time	8	W	1 – 127	Exit time in seconds
					(then stop mode again)
					+128 = slow travel instead of free travel
167	Pendula/Break generator	0	W	1 – 2048	Switching address between pendula mode
	address hoch				and brake generator mode
168	Pendula/Break generator	0	W		Active if CV 49 Bit 1 = 1, Bit 2 = 1
	address tief				
171	DCCext address hoch	0	W	1 – 2048	Active if CV 49 Bit 1 = 1, Bit 2 = 1
172	DCCext address tief	0	W		

173	DCCext command "GO1"	16	W	0 – 255	DCCext value for free travel (GO)
174	DCCext command "GO2"	41	W	0 – 255	DCCext value for free travel (GO)
175	DCCext command "GO3"	137	W	0 – 255	DCCext value for free travel (GO)
176	DCCext command "GO4"	65	W	0 – 255	DCCext value for free travel (GO)
177	DCCext command "GO5"	255	W	0 – 255	DCCext value for free travel (GO)
178	DCCext command "GO6"	255	W	0 – 255	DCCext value for free travel (GO)
179	DCCext command "GO7"	255	W	0 – 255	DCCext value for free travel (GO)
180	DCCext command "GO8"	255	W	0 – 255	DCCext value for free travel (GO)
181	DCCext command "GO9"	255	W	0 – 255	DCCext value for free travel (GO)
182	DCCext command "GO10"	255	W	0 – 255	DCCext value for free travel (GO)
183	DCCext command "SLOW1"	2	W	0 – 255	DCCext value for slow speed (SLOW)
184	DCCext command "SLOW2"	34	W	0 – 255	DCCext value for slow speed (SLOW)
185	DCCext command "SLOW3"	130	W	0 – 255	DCCext value for slow speed (SLOW)
186	DCCext command "SLOW4"	4	W	0 – 255	DCCext value for slow speed (SLOW)
187	DCCext command "SLOW5"	36	W	0 – 255	DCCext value for slow speed (SLOW)
188	DCCext command "SLOW6"	6	W	0 – 255	DCCext value for slow speed (SLOW)
189	DCCext command "SLOW7"	3	W	0 – 255	DCCext value for slow speed (SLOW)
190	DCCext command "SLOW8"	35	W	0 – 255	DCCext value for slow speed (SLOW)
191	DCCext command "SLOW9"	255	W	0 – 255	DCCext value for slow speed (SLOW)
192	DCCext command "SLOW10"	255	W	0 – 255	DCCext value for slow speed (SLOW)
193	DCCext command "STOP1"	0	W	0 – 255	DCCext value for STOP/HALT
194	DCCext command "STOP2"	69	W	0 – 255	DCCext value for STOP/HALT
195	DCCext command "STOP3"	71	W	0 – 255	DCCext value for STOP/HALT
196	DCCext command "STOP4"	70	W	0 – 255	DCCext value for STOP/HALT
197	DCCext command "STOP5"	68	W	0 – 255	DCCext value for STOP/HALT
198	DCCext command "STOP6"	255	W	0 – 255	DCCext value for STOP/HALT
199	DCCext command "STOP7"	255	W	0 – 255	DCCext value for STOP/HALT
200	DCCext command "STOP8"	255	W	0 – 255	DCCext value for STOP/HALT
201	DCCext command "STOP9"	255	W	0 – 255	DCCext value for STOP/HALT
202	DCCext command "STOP10"	255	W	0 – 255	DCCext value for STOP/HALT

Technische Daten

Technical data

Power supply:

7-27V DC/DCC

Spannung:

7-27V DC/DCC

5-18V AC

5-18V AC

Current:

20mA (with out functions)

Stromaufnahme:

20mA (ohne Funktionsausgänge)

Maximaler Funktionsstrom:

A1 0.5A A2 0.5A SW1 0.7A SW2 0.7A

Bremsgenerator 5A

Maximum function current:

A1 0.5 Amps.
A2 0.5 Amps.
SW1 0.7 Amps.
SW2 0.7 Amps.

Brakegenerator 5 Amps.

Maximaler Gesamtstrom:

10A

Maximum current:

10 Amps.

Temperaturbereich:

-20 bis 65°C

Temperature range:

-20 up to 65°C

Abmaße L*B*H (cm):

5.8*6.8*1.7

Dimensions L*B*H (cm):

5.8*6.8*1.7

HINWEIS: Um Kondenswasserbildung zu vermeiden benutzen Sie die Elektronik bei Temperaturen unter 0°C nur, wenn diese vorher aus einem beheizten Raum kommt. Im Betrieb sollte sich kein weiteres Kondenswasser bilden können.

NOTE: In case you intend to utilize this device below freezing temperatures, make sure it was stored in a heated environment before operation to prevent the generation of condensed water. During operation is sufficient to prevent condensed water.

Garantie, Reparatur

micron-dynamics gewährt die Fehlerfreiheit dieses Produkts für ein Jahr. Die gesetzlichen Regelungen können in einzelnen Ländern abweichen. Verschleißteile sind von der Garantieleistung ausgeschlossen. Berechtigte Beanstandungen werden kostenlos behoben. Für Reparaturoder Serviceleistungen senden Sie das Produkt bitte direkt an den Hersteller. Unfrei zurückgesendete Sendungen werden nicht angenommen. Für Schäden durch unsachgemäße Behandlung oder Fremdeingriff oder Veränderung des Produkts besteht kein Garantieanspruch. Der Anspruch auf Serviceleistungen erlischt unwiderruflich. Auf unserer Internetseite finden Sie die jeweils aktuellen Broschüren, Produktinformationen, Dokumentationen und Softwareprodukte rund um unsere Produkte. Softwareupdates können Sie mit unserem Updater durchführen, oder Sie senden uns das Produkt zu; wir updaten für Sie kostenlos.

Warranty, Service, Support

micron-dynamics warrants this product against defects in materials and workmanship for one year from the original date of purchase. Other countries might have different legal warranty situations. Normal wear and tear, consumer modifications as well as improper use or installation are not covered. Peripheral component damage is not covered by this warranty. Valid warrants claims will be serviced without charge within the warranty period. For warranty service please return the product to the manufacturer. Return shipping charges are not covered by micron-dynamics. Please include your proof of purchase with the returned good. Please check our website for up to date brochures, product information, documentation and software updates. Software updates you can do with our updater or you can send us the product, we update for you free.

Irrtümer und Änderungen vorbehalten.

Errors and changes excepted.

EU-Konformitätserklärung

Dieses Produkt erfüllt die Forderungen der nachfolgend genannten EG-Richtlinien und trägt hierfür die CE-Kennzeichnung.

2014/30/EU über elektromagnetische
Verträglichkeit. Zu Grunde liegende Normen:
EN 55014-1 und EN 61000-6-3. Um die elektromagnetische Verträglichkeit beim Betrieb aufrecht zu erhalten, beachten Sie die Hinweise in dieser Anleitung.

• EN IEC 63000:2018 zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (RoHS).

WEEE-Richtlinie

Dieses Produkt erfüllt die Forderungen der EU-Richtlinie 2012/19/EG über Elektro- und Elektornik-Altgeräte (WEEE). Entsorgen Sie dieses Produkt nicht über den (unsortierten) Hausmüll, sondern führen Sie es der Wiederverwertung zu. WEEE: DE69511296

EC declaration of conformity

This product meets the requirements of the following EC directives and bears the CE mark for this.

2014/30/EU on electromagnetic compatibility. Underlying standards: EN 55014-1 and EN 61000-6-3. To the electromagnetic compatibility during operation to maintain, follow the instructions in this guide.

EN IEC 63000:2018 to limit the use of certain hazardous substances in electrical and electronic equipment (RoHS).

WEEE Directive

This product meets the requirements of EU Directive 2012/19/EC on electrical and waste electronic equipment (WEEE). Dispose of this product does not have the (unsorted) household waste, but run it the recycling to.

WEEE: DE69511269

Hotline

Bei Serviceanfragen und Schaltplänen für Anwendungsbeispiele richten Sie sich bitte an:

Hotline

For technical support and schematics for application examples contact:

micron-dynamics

info@micron-dynamics.de service@micron-dynamics.de

micron-dynamics

info@micron-dynamics.de service@micron-dynamics.de

www.micron-dynamics.de https://www.youtube.com/@micron-dynamics

